当前位置:首页 > 试卷分析 > 数学试卷分析 > 正文
 

2016年北京中考数学试卷分析重难点分布

发布时间:2024-12-22 19:01:04 影响了:

小编语:为你精心整理的2016年北京中考数学试卷分析重难点分布,希望对你有帮助! 如果喜欢就请继续关注我们博文学习网(www.hnnscy.com)的后续更新吧!

2016年北京中考数学试卷分析重难点分布篇一:2016年北京市中考数学试卷解析版

2016年北京市中考数学试卷

一、选择题(本题共30分,每小题3分)

1.(3分)(2016?北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )

A.45° B.55° C.125° D.135°

2.(3分)(2016?北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )

3345A.2.8×10 B.28×10 C.2.8×10 D.0.28×10

3.(3分)(2016?北京)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )

A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b

4.(3分)(2016?北京)内角和为540°的多边形是( )

A. B. C. D.

5.(3分)(2016?北京)如图是某个几何体的三视图,该几何体是( )

A.圆锥 B.三棱锥 C.圆柱 D.三棱柱

)?的值是( ) 6.(3分)(2016?北京)如果a+b=2,那么代数(a﹣

A.2 B.﹣2 C. D.﹣

7.(3分)(2016?北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )

A. B. C. D.

8.(3分)(2016?北京)在1﹣7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )

A.3月份 B.4月份 C.5月份 D.6月份

9.(3分)(2016?北京)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为( )

A.O1 B.O2 C.O3 D.O4

10.(3分)(2016?北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各(转 载于:www.hnNscy.CoM 博文学习网:2016年北京中考数学试卷分析重难点分布)档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单

3位:m),绘制了统计图.如图所示,下面四个推断合理的是( )

3①年用水量不超过180m的该市居民家庭按第一档水价交费;

3②年用水量超过240m的该市居民家庭按第三档水价交费;

③该市居民家庭年用水量的中位数在150﹣180之间;

④该市居民家庭年用水量的平均数不超过180.

A.①③

B.①④ C.②③ D.②④

二、填空题(本题共18分,每小题3分)

11.(3分)(2016?北京)如果分式有意义,那么x的取值范围是

12.(3分)(2016?北京)如图中的四边形均为矩形,根据图形,写出一个正确的等

式.

13.(3分)(2016?北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这

14.(3分)(2016?北京)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.

15.(3分)(2016?北京)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和

为.

16.(3分)(2016?北京)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l和l外一点P.(如图1)

求作:直线l的垂线,使它经过点P.

作法:如图2

(1)在直线l上任取两点A,B;

(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;

(3)作直线PQ.

所以直线PQ就是所求的垂线.

请回答:该作图的依据是.

三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程

017.(5分)(2016?北京)计算:(3﹣π)+4sin45°﹣+|1﹣|.

18.(5分)(2016?北京)解不等式组:.

19.(5分)(2016?北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.

20.(5分)(2016?北京)关于x的一元二次方程x+(2m+1)x+m﹣1=0有两个不相等的实数根.

(1)求m的取值范围;

(2)写出一个满足条件的m的值,并求此时方程的根.

21.(5分)(2016?北京)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).

(1)求直线l1的表达式;

(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.

22

22.(5分)(2016?北京)调查作业:了解你所在小区家庭5月份用气量情况:

小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.

小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.

3

小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.

23.(5分)(2016?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

(1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

24.(5分)(2016?北京)阅读下列材料:

北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.

2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.

根据以上材料解答下列问题:

(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;

2016年北京中考数学试卷分析重难点分布篇二:2015年北京中考数学试卷分析

火红的六月,北京中正如火如荼的进行中。针对今早新鲜出炉数学试卷,高思教育第一时间为大家分析:一、试题构成① 试卷知识板块构成:概率统计、平面几何、代数的分值比,这一点与往年北京中考试卷结构基本一致。

② 试卷难度构成:纵观整套试卷,难度较为平缓,易、中、难的分值比基本上是,仅有最后两题(第28题几何综合7分题,第29题代几综合8分题)难度较大。

今年试题较往年而言,考察知识点广度变化不大:

增加的考点有:1.圆内接四边形对角互补(第28题第(2)问)。

2.利用相对位置探求点的坐标(第8题,紫禁城宫殿坐标)。

3.尺规作图原理(第16题,给定线段中垂线的尺规作图之理论依据)。

删除的考点有:1.梯形。

2.圆和圆的位置关系。

3.频数和频率。

今年试题较往年而言,题量增加4题,难度有所下降。主要考察考生对基本知识点的掌握程度。难度降了,可不代表容易得高分,试题出的很灵活。总体上讲,要拿115以上高分实属不易。二、主要试题具体分析:1.选择题第8题:此题考察利用相对位置探求点的坐标。此题将紫禁城内各大宫殿置于正方形网格中,以此为背景建立平面直角坐标系。但只给定x、y轴正方向,并未直接给定原点位置和单位长度。而是通过给定太和门、九龙壁两点坐标间接给出以上信息,考查方式很灵活。

2.选择题第10题:延续往年选择题最后一题的一贯作风,给定数学模型考查函数大致图像,结合图像特点通过排除法得出正确选项。

3.填空题第15题:严格上讲,此题属于线性拟合问题,考查考生的归纳能力。此题以北京市2009~2014年轨道交通日均客运量为题材,给出一条由6个点连接而成的折线图。如果考生注意到这6个点大致在同一条直线上,那么问题迎刃而解:2015年相对于2014年客运增长量大致是2009~2014五年间年均增长量,是108万人次,那么2015年日均客运量约为1038万人次。

图示 6.解答题第28题:几何综合大题,此题以正方形为大环境,考察旋转、平移、四点共圆、解三角形等知识点。第(1)问,△HAD和△HPQ是旋转全等。第(2)问只要求给出计

算方案而不要求计算结果,提问方式新颖。利用Rt△ADP、Rt△AHP共斜边,得出A、P、D、H四点共圆,圆心为斜边AP的中点。利用共圆倒角,得出,那么。或者,利用、△等腰直,过H作PQ垂线,垂足是DQ中点,也能列二元一次方程组解出等价的结论:

7.解答题第29题:代几综合大题,此题给定新定义:定点关于圆的反称点,考察学生的对新概念的理解能力、归纳概括能力,要求学生现学现用。第(1)问,反称点是否存在判定依据是:定点到圆的圆心的距离不超过圆的直径。第(2)问,动态问题,线段AB上存在使得点P关于动圆⊙C的反称点在⊙C内部的充分必要条件是:线段AB上存在到动点C距离大于1而不超过2的点。三、寄语新初三学生一年一度的北京市中考即将落下帷幕,新初三的同学们,明年你们就要走进这没有硝烟的战场。希望你们在接下来一年的数学学习与复习备考中,注意以下几个方面:

① 抓教材,吃透知识点是第一要务。

② 首先秒杀中低档题,确保解答过程滴水不漏,中考送分题一定要全部笑纳。

③ 代数方面,特别要注意:对于两大难点二次函数、反比例函数,多结合图象性质来解决问题,代几综合的核心思想是数形结合。

④ 几何方面,以平移、轴对称、旋转三大几何变换为主线,穿插着8字型、A字型,半角模型、手拉手模型等常见基本几何模型的训练。

⑤ 最后,我忍不住说一句,大多数同学倒角能力弱,证全等、证相似时找边很容易、倒角倒不出来是常见现象。对于这些同学,要加强倒角方面的训练。

2016年北京中考数学试卷分析重难点分布篇三:2016年北京市中考数学试卷(解析版)

2016年北京市中考数学试卷

总分:120

一、选择题(本题共30分,每小题3分)

1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( ) A.45° B.55° C.125° D.135°

考点:角的概念.

分析:由图形可直接得出.

解答:解:由图形所示,∠AOB的度数为55°, 故选B.

点评:本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.

2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( ) A.2.8×10 B.28×10C.2.8×10 D.0.28×10 考点:科学记数法—表示较大的数.

分析:科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 解答:解:28000=1.1×104. 故选:C.

点评:此题考查科学记数n法的表示方法,表示时关键要正确确定a的值以及n的值.

3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( ) A.a>-2 B.a<-3 C.a>-b D.a<

-b

考点:实数与数轴.

分析:利用数轴上a,b所在的位置,进而得出a以及-b的取值范围,进而比较得出答案. 解答:解:A、如图所示:-3<a<-2,故此选项错误; B、如图所示:-3<a<-2,故此选项错误;

C、如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误; D、由选项C可得,此选项正确. 故选:D.

点评:此题主要考查了实数与数轴,正确得出a以及-b的取值范围是解题关键.

4.内角和为540°的多边形是( )

3

3

4

5

A.B.C.D.

考点:多边形内角与外角.

分析:根据多边形的内角和公式(n-2)?180°列式进行计算即可求解. 解答:解:设多边形的边数是n,则 (n-2)?180°=540°, 解得n=5. 故选:C.

点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.

5.如图是某个几何体的三视图,该几何体是( ) A.圆锥 B.三棱锥 C.圆柱 D.三棱柱 考点:由三视图判断几何体.

分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.

解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选D

点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.

2

6.如果a+b=2,那么代数(a-b)?a的值是( )

aa-b

A.2 B.-2 C.1 D.-1

22

考点:分式的化简求值. 专题:计算题;分式.

分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 解答:解:∵a+b=2,

∴原式= (a+b)(a-b)?a=a+b=2

aa-b

故选:A.

点评:此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.

7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )

A. B. C.D.

考点:轴对称图形.

分析:根据轴对称图形的概念求解.

解答:解:A、是轴对称图形,故本选项错误; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误; D、不是轴对称图形,故本选项正确. 故选D.

点评:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

8.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( ) A.3月份 B.4月份 C.5月份 D.6月份

考点:象形统计图.

分析:根据图象中的信息即可得到结论.

解答:解:由图象中的信息可知,3月份的利润=7.5-4.5=3元, 4月份的利润=6-2.4=3.6元, 5月份的利润=4.5-1.5=3元, 5月份的利润=2.5-1=1.5元,

故出售该种水果每斤利润最大的月份是4月份, 故选B.

点评:本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.

9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

A.O1 B.O2 C.O3 D.O4

考点:坐标与图形性质;一次函数图象与系数的关系.

分析:先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置. 解答:解:设过A、B的直线解析式为y=kx+b ∵点A的坐标为(-4,2),点B的坐标为(2,-4) ∴ 2=?4k+b ?4=2k+b 解得: k=?1 b=?2 ∴直线AB为y=-x-2

∴直线AB经过第二、三、四象限 如图,连接AB,则原点在AB的右上方

∴坐标原点为O1 故选(A)

点评:本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.

10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m),绘制了统计图.如图所示,下面四个推断合理的是( ) ①年用水量不超过180m3的该市居民家庭按第一档水价交费; ②年用水量超过240m3的该市居民家庭按第三档水价交费; ③该市居民家庭年用水量的中位数在150-180之间; ④该市居民家庭年用水量的平均数不超过180.

A.①③ B.①④ C.②③ D.②④

3

考点:频数(率)分布直方图;加权平均数;中位数. 分析:利用条形统计图结合中位数的定义分别分析得出答案.

解答:解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万), 4×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确; 5

②∵年用水量超过240m的该市居民家庭有(0.15+0.15+0.05)=0.35(万),

∴0.35×100%=7%≠5%,故年用水量超过240m的该市居民家庭按第三档水价交费,故此选项错误;

3

3

5

③∵5万个数数据的中间是第25000和25001的平均数,

∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误; ④由①得,该市居民家庭年用水量的平均数不超过180,正确, 故选:B.

点评:此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.

二、填空题(本题共18分,每小题3分) 11.如果分式

2有意义,那么x的取值范围是 _______. x-1

考点:分式有意义的条件.

分析:根据分母不为零分式有意义,可得答案. 解答:解:由题意,得:x-1≠0, 解得x≠1, 故答案为:x≠1.

点评:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.

12.如图中的四边形均为矩形,根据图形,写出一个正确的等式 ______________.

考点:因式分解-提公因式法.

分析:直接利用矩形面积求法结合提取公因式法分解因式即可. 解答:解:由题意可得:am+bm+cm=m(a+b+c). 故答案为:am+bm+cm=m(a+b+c).

点评:此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.

13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:

估计该种幼树在此条件下移植成活的概率为 _______. 考点:利用频率估计概率.

分析:对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法. 解答:解:=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.882, ∴这种幼树移植成活率的概率约为0.882. 故答案为:0.882

点评:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.

14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 _______m.

考点:中心投影.

分析:根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知CD?DE,FN?MN,即可得到结论.

AB

BE

FBAB

解答:解:如图,∵CD∥AB∥MN, ∴△ABE∽△CDE,△ABF∽△MNF,

相关热词搜索:难点 北京 中考 分布 数学试卷 2016南通中考数学试卷 2016苏州中考数学试卷

相关文章
最新文章

Copyright © 2008 - 2017 版权所有 博文学习网

工业和信息化部 湘ICP备09005888号-2